Getting Started
This documentation is under development and may be incomplete.
Using a SoftPack environment
This tutorial describes how to use a previously created SoftPack environment for running Python, R or RStudio.
SoftPack environments are made available through the module command. It's the
only command you need to learn in order to use a SoftPack environment.
Documentation for the module command is available at the Environment Modules
site if you're new to modules.
The first step is to tell the module command where to look for your
environments. The following module use command adds the directory where
your modules are installed. It's generally a good idea to add this command to
you shell startup file (.bashrc or equivalent) so you don't have to do this
manually each time you start a new shell.
$ module use --append /software/hgi/softpack/modules/users/$USER
The module use command can also be used to verify that module knows about
all the directories where your modules are installed.
$ module use
Search path for module files (in search order):
/etc/environment-modules/modules
/usr/share/modules/versions
/usr/share/modules/modulefiles
/software/hgi/softpack/modules/users/aa27
You can now run module avail to get a list of all environments available to
you.
$ module avail
--------------------- /usr/share/modules/modulefiles ---------------------
dot module-git module-info modules null use.own
---------------- /software/hgi/softpack/modules/users/aa27 ----------------
seurat5/1.0
There are two additional module subcommands worth noting here.
module whatisgives you a brief synopsis of what the module is about.module helpdescribes the module in more detail.
module whatis
$ module whatis seurat5
---------------- /software/hgi/softpack/modules/users/aa27 ----------------
seurat5/1.0: Softpack pilot with seurat 5, bpcells and monocle3
module help
$ module help seurat5
-------------------------------------------------------------------
Module Specific Help for /software/hgi/softpack/modules/users/aa27/seurat5/1.0:
description: Softpack pilot with seurat 5, bpcells and monocle3
build:
id: 6cb0fb19-19c2-4cc6-8e4a-9587cca739a0
image: /software/hgi/softpack/images/6cb0fb19-19c2-4cc6-8e4a-9587cca739a0.sif
created: 2023-04-28 16:34:42
updated: 2023-04-28 22:15:44
packages:
- r-afex
- r-affy
- r-affyio
- r-annotationfilter
:
Loading a module
To load a module, simply run module load with the name of an available module.
$ module load seurat5
Loading seurat5/1.0
Loading requirement: /software/modules/ISG/singularity/3.10.0
You can get a list of all loaded modules using the module list command.
$ module list
Currently Loaded Modulefiles:
1) /software/modules/ISG/singularity/3.10.0 2) seurat5/1.0
Now that the module is loaded, you can run Python, R or RStudio.
Running RStudio
SoftPack environments that include RStudio will include a new rstudio command
that starts a batch job on your high performance cluster.
$ rstudio
Usage: rstudio [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
list List running RStudio servers.
start Start RStudio server.
stop Stop RStudio server.
To start a new RStudio session, use the rstudio start command. The
rstudio start command supports the following optional arguments.
$ rstudio start --help
Usage: rstudio start [OPTIONS]
Start RStudio server.
Options:
--home PATH home directory inside the container. [default:
/nfs/users/nfs_a/aa27]
-M MB sets the memory limit for the job (in MB). [default:
15000]
-n MIN[,MAX] submits a parallel job and specifies the number of
tasks in the job. [default: 2]
-o, --output FILENAME output filename. [default: rstudio_session.log]
--pwd PATH initial working directory inside the container.
[default: /nfs/users/nfs_a/aa27]
-q, --queue QUEUE submits the job to the specified queue.
--r-libs-user PATH specifies additional directories for R packages.
--help Show this message and exit.
You can change the home directory used inside RStudio using --home argument
or by changing you current directory before starting the RStudio session.
Running rstudio start submits a batch job, starts RStudio server and provides
you with instructions on how to connect to your RStudio session as shown below.
$ rstudio start
LSF job options:
io:
errorAppendFile: rstudio_session.log
outputAppendFile: rstudio_session.log
limit:
memLimit: 15000
properties:
jobName: aa27/rstudio-server
resource:
numTasks: '2'
resReq: select[model==Intel_Platinum && mem>15000] rusage[tmp=5000, mem=15000] span[hosts=1]
Job <22845162> is submitted to default queue <normal>.
Waiting for RStudio server to start ...
To access the server, open one of these URLs in a browser and login with the credentials below:
http://node-10-3-4.internal.sanger.ac.uk:33025
http://172.27.224.27:33025
username: aa27
password: iJX7MCV1w+6IPyXcYs9H
Once you're finished with RStudio, use the rstudio stop command to terminate
the session.
$ rstudio stop
Job <22845162> is being terminated
You can also use the rstudio list command to get a list of all running
sessions.
$ rstudio list
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
22845162 aa27 RUN normal hgi-farm5 node-10-3-4:node-10-3-4 aa27/rstudio-server May 2 11:21